LES DIODES: CORRIGE

Diode de signal.

 Dessiner le symbole d'une diode à jonction PN et indiquer les zones P et N, l'anode et la cathode.

L'anode est la zone P La cathode est la zone N

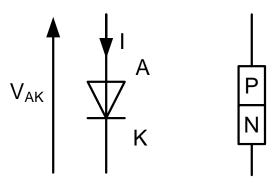
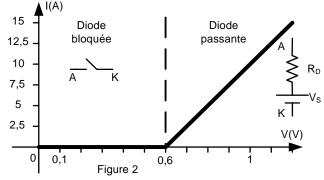


Figure 1

2. Dans le cas d'une polarisation directe, représenter la d.d.p. aux bornes de la diode et le courant direct.

Voire figure 1

3. Écrire l'équation de Shockley.


$$I = I_s \left[\exp\left(\frac{qV}{kT}\right) - 1 \right] ;$$

On nomme potentiel thermique la quantité : $V_{\scriptscriptstyle T} = \frac{kT}{Q}$

4. Calculer la valeur du « potentiel thermique » V_T à température ambiante 27°C. $k=1,38\ 10^{-23}\ J/K$: constante de Boltzmann.

$$V_T = \frac{kT}{Q} = \frac{1,38.10^{-23}.(27 + 273)}{1.6.10^{-19}} = 25.9 mV$$

5. Pour une diode idéale, la courbe caractéristique est constituée de 2 demi-droites issues du point M(I=0, V=V_s), l'une est horizontale l'autre de pente $1/R_D$. Tracer cette courbe dans le cas d'une diode au Silicium (V_s= 0,6V) ayant R_D =40 Ω .

La courbe est linéarisée par morceaux ;

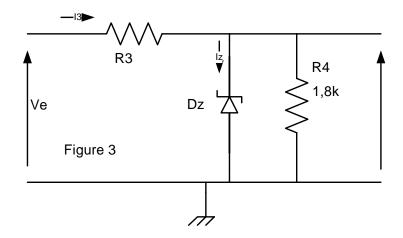
une demi droite horizontale jusqu'en V = V_s = 0,6V, une demi droite oblique de pente $+\frac{1}{R_D}$ (croissance de 5 mA tous les 0,2V)

6. Donner le schéma équivalent électrique à la diode dans les deux zones $V < V_s$ et $V > V_s$.

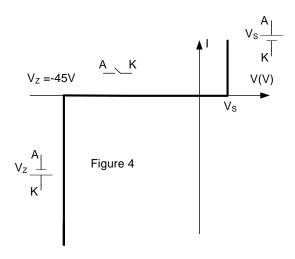
Voire figure 2

Pour $V < V_s$ la diode est bloquée et peut être remplacée par un interrupteur ouvert

Pour $V>V_s$ la diode est passante et son schéma équivalent est constitué d'une résistance ($R_{\scriptscriptstyle D}$) et d'une f.c.e.m. de valeur $V_{\scriptscriptstyle S}$ = 0,6V.

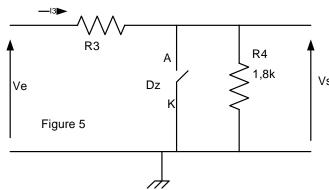

7. La diode 1N4148 a Is=12 fA. Calculer la valeur de la résistance dynamique lorsque $V_D=0,65V$ et $V_T=25mV$.

$$\begin{split} &Is=12~\text{fA} = 12.10^{-15}\text{A} \\ &\frac{dI}{dV} \approx \frac{I}{V_T} \; (\text{diode passante}) \ \Rightarrow R_D = \frac{V_T}{I} \; \text{soit} \; R_D = \frac{25}{I(mA)}\Omega \\ &\text{calcul de I} : \\ &I=12.10^{-15} \bigg[\exp\bigg(\frac{0.65}{25.10^{-3}}\bigg) - 1 \bigg] = \; 2\,,\,35 \; \text{mA} \end{split}$$


finalement :
$$R_D = \frac{25}{2,35} = 10,6\Omega$$

Diode Zener

Soit une diode Dz de référence de tension 45V dont la caractéristique couranttension est idéalisée (résistances dynamiques nulles dans les états passants : rd = rz=0, courant nul dans l'état bloqué. On cherche à réguler (préciser la fonction) une tension Ve pouvant varier entre 40 et 60Vselon le schéma de la figure 3.

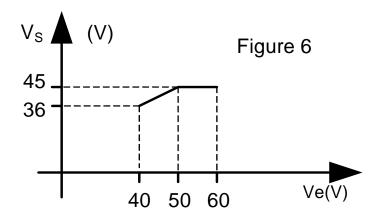


1. Représenter la courbe caractéristique (I-V) de la diode Dz, préciser les schémas équivalents électriques de la diode dans les différents états.

2. Lorsque Ve = 40V, on mesure I3 = 20mA (courant dans R3). Calculer R3.

Ve = 40V < Vz ; la diode est bloquée ; le schéma équivalent à cet état est représenté figure 5.

On peut écrire : $V_e = (R_3 + R_4)I_3$; on déduit : $R_3 = 200\Omega$.


- 3. A partir de quelle valeur de Ve, la tension de sortie est-elle régulée ? La régulation débute lorsque $V_s=45V$ mesurée aux bornes de R_4 ; alors $I_4=\frac{V_S}{R_4}=25mA$. La diode est au seuil de déblocage et $I_z=0$; donc : $V_e=\left(R_3+R_4\right)I_3=50V$
- 4. Calculer Iz, le courant dans Dz, lorsque Ve = 60V.

Lorsque Ve = 60V, la diode conduit (en inverse) et impose V_s = 45V et donc I_4 =25mA ; la d.d.p. aux bornes de R3 est : $R_{\rm R3}$ = Ve- $V_{\rm S}$ 15V.

Le courant dans R_3 vaut : $I_3 = \frac{15}{2.10^2} = 75mA$

Le courant dans la diode est : I_z - I_s =50mA.

5. Tracer le graphe de transfert Vs = f(Ve).

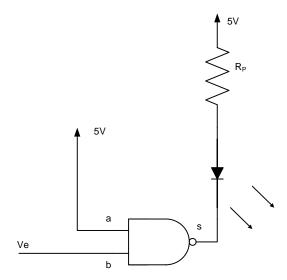
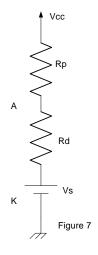
Tant que la diode est bloquée [Ve< 50V] $V_{\rm S} = \frac{R_{\rm 4}}{R_{\rm 3} + R_{\rm 4}} V_{\rm e} = 0.9 V_{\rm e}$

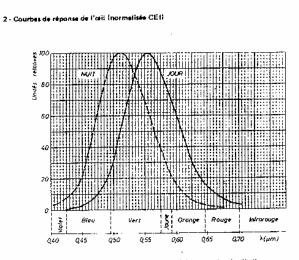
Pour Ve =40V alors $V_s = 36V$ Quand la diode est passante [Ve> 50V] alors $V_s = 45V$.

Diode électroluminescente (LED)

Une diode électroluminescente (DEL) D_L est commandée par une porte logique U_1 (porte NAND en technologie TTL). Elle doit s'éclairer lorsque la sortie de U_1 est à l'état bas. L'ensemble est alimenté sous une tension continue de 5V. La diode est caractérisée par Eg = 1,9eV , Vs= 1,4V, r_d =10 Ω , I_{moy} = 20mA.

1. Dessiner le schéma du circuit.


Table de vérité :

а	b	a.b	/(a.b)	DEL
0	0	0	1	
0	1	0	1	
1	0	0	1	éteinte
1	1	1	0	allumée

2. Calculer la valeur de la résistance de protection R_p.

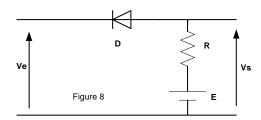
On a Vs= 1,4V, $r_{_{d}}$ =10 Ω , $I_{_{mov}}$ = 20mA, $V_{_{CC}}$ = 5V

Courbe de sonsibilité spectrale de l'œil.

La d..d.p. aux bornes de la diode est $:V_{\rm\scriptscriptstyle AK}$ = $V_{\rm\scriptscriptstyle S}+R_{\rm\scriptscriptstyle D}.I_{\rm\scriptscriptstyle moy}$ = 1,6V

On déduit : $R_p = \frac{V_{CC} - V_{AK}}{I_{moy}} = 170\Omega$

3. Quelle est la longueur d'onde et la couleur de la radiation émise ? On donne: $h=6,63.10^{-34}~J.s$ (constante de Planck); $c=3.10^8~m.s^{-1}$ (célérité de la lumière); $1eV=1,6.10^{-19}~J.$

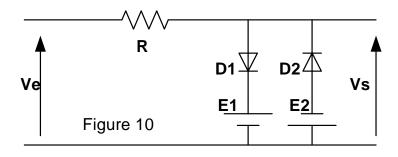

L'énergie restituée sous forme radiative (émission d'un photon)lors de la recombinaison d'une paire électron-trouest :

$$E_g = h v = \frac{hc}{\lambda}$$
 (J) $d'où : \lambda(\mu m) = \frac{hc}{E_g} \cdot \frac{1}{1,6.10^{-19}} = \frac{1,24}{E_g(eV)}$

La longueur d'onde des photons émis est λ = 0,654 μ m = 654nm Cela correspond à une raie rouge.

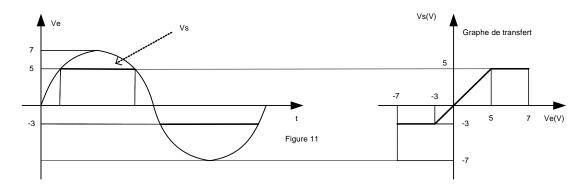
Circuits limiteurs

La source d'entrée est sinusoïdale d'expression $v_e(t) = V_M \sin \omega t$, la source de tension continue vaut E=5V. Déterminer l'état de la diode dans le circuit de la figure 8, et tracer les graphes de $v_s = f(v_e)$ puis $v_s = g(t)$ quand : $V_M = 7V$ puis $V_M = 3V$.

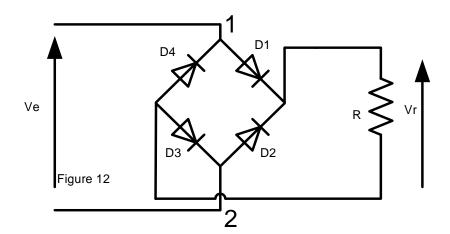


Quand la diode est bloquée, aucun courant ne circule dans R et $V_{\rm s}$ = E = $V_{\rm A}$. Or $V_{\rm e}$ = $V_{\rm K}$. La condition de blocage est : $V_{\rm K}$ > $V_{\rm A}$, soit $V_{\rm e}$ > E.

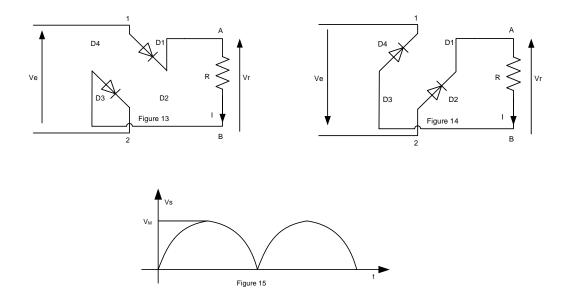
Autrement la diode est passante, pour Ve < E, et VS = Ve.


- $V_{\rm M}$ = 7V et E = 5V ; $V_{\rm M}$ > E le graphe de transfert est représenté sur la partie droite de la figure 9. Le graphe de $V_{\rm S}(t)$ est une sinusoïde tronquée en V = E
- $V_{\rm M}=3$ V et E=V; $V_{\rm M}$ est toujours inférieur à E; le graphe de transfert est la portion de la première bissectrice comprise entre -3V et +3V; Vs est une sinusoïde pure.
- 2 La source d'entrée est sinusoïdale d'expression $v_e(t) = V_M \sin \omega t$, les sources de tension valent : $E_1 = 5V$ et $E_2 = 3V$. Déterminer l'état des diodes dans le circuit de la 10, et tracer les graphes de $v_s = f(v_e)$ puis $v_s = g(t)$ quand : $V_M = 7V$.

 $D_{\scriptscriptstyle 2}$ est bloquée si $V_{\scriptscriptstyle A2}-V_{\scriptscriptstyle K2}$ <0 or $V_{\scriptscriptstyle A2}$ = -E $_{\scriptscriptstyle 2}$ donc si $V_{\scriptscriptstyle K2}$ > -E $_{\scriptscriptstyle 2}$ $D_{\scriptscriptstyle 1}$ est bloquée si $V_{\scriptscriptstyle A1}-V_{\scriptscriptstyle K1}$ <0 or $V_{\scriptscriptstyle K1}$ = E $_{\scriptscriptstyle 1}$ donc si $V_{\scriptscriptstyle A1}$ < E $_{\scriptscriptstyle 1}$ • Les deux diodes sont bloquées, alors $V_{\scriptscriptstyle S}$ = Ve = $V_{\scriptscriptstyle A1}$ = $V_{\scriptscriptstyle K2}$


- Donc si - E_2 < Ve < E_1
- Si $Ve > E_{_1} > -E_{_2}$, $D_{_1}$ est passante et $V_{_S} = E_{_1}$, $D_{_2}$ est bloquée
- Si $Ve < -E_2 < E_1$, D_2 est passante et $V_S = -E_2$, D_1 est bloquée.

Voire figure 11



CIRCUIT REDRESSEUR

La source d'entrée est sinusoïdale d'expression $v_e(t) = V_M \sin \omega t$. Les diodes sont idéales $(Rd = 0\Omega \text{ et } Vs = 0V)$. Déterminer la forme de la d.d.p. V_R et les états des diodes durant chaque phase.

- Lorsque $V_1 > V_2$ (alternance positive du signal d'entrée), D_1 et D_3 sont passantes, D_2 et D_4 sont bloquées ; le courant circule dans la résistance de charge de A vers B (figure 13)
- Lorsque $V_2 < V_1$ (alternance négative du signal d'entrée), D_2 et D, sont passantes, D, et D, sont bloquées ; le courant circule dans la résistance de charge de A vers B (figure 14) La tension Vr est donc redressée double alternance (figure 15).

NB : Etudier le cours sur les diodes pages 27 à 35 « Electronique Analogique S. DUSAUSAY », et/ou pages 31 à 46 « Electronique M. GINDRE ».